This PDF is a version of an online module that is part of the Principles for Transitioning to Organic Farming project. For all of our educational materials, please visit:

http://organictransition.umn.edu/

This project is funded by a grant from the <u>Organic Transitions Program</u>, part of the USDA National Institute of Food and Agriculture, under Grant Number <u>2013-51106-21005</u>.

© 2017. Regents of the University of Minnesota. All rights reserved.

Harvesting and Storage of Forages

This material is based upon w Authors by t Narrated by f Fc Constance Carlson S. De Constance Carlson re, under grant number 2013-51106-21005.

Introduction

 \bigcirc

\bigcirc

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.** Baling V. Transport **VI. Storage VII.Moisture Content**

What Is Hay?

- Forage stored in air
- Low moisture (>20%)
- Sun-dried
- Packaged

Goals of Haymaking

Minimize field lossesMinimize storage losses

Alfalfa hay that is rained-on during drying and has suffered loss of both forage quality and yield.

Alfalfa Leaf Shattering



Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.** Baling V. Transport **VI. Storage VII.Moisture Content**

Cutting Standing Forage

Windrows

Will dry on top
Need raking so underside will dry

Wide Swath

Exposes more of forage to sun and wind

Forage Drying

- Forage moisture content changes from ~80% uncut and drying to <20%
- Moisture loss depends on sun's energy; aided by wind, low humidity
- Typically takes 2-4 days

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.** Baling V. Transport **VI. Storage VII.Moisture Content**

Wheel Rake

Side Bar Rake

NEW HOLLAND

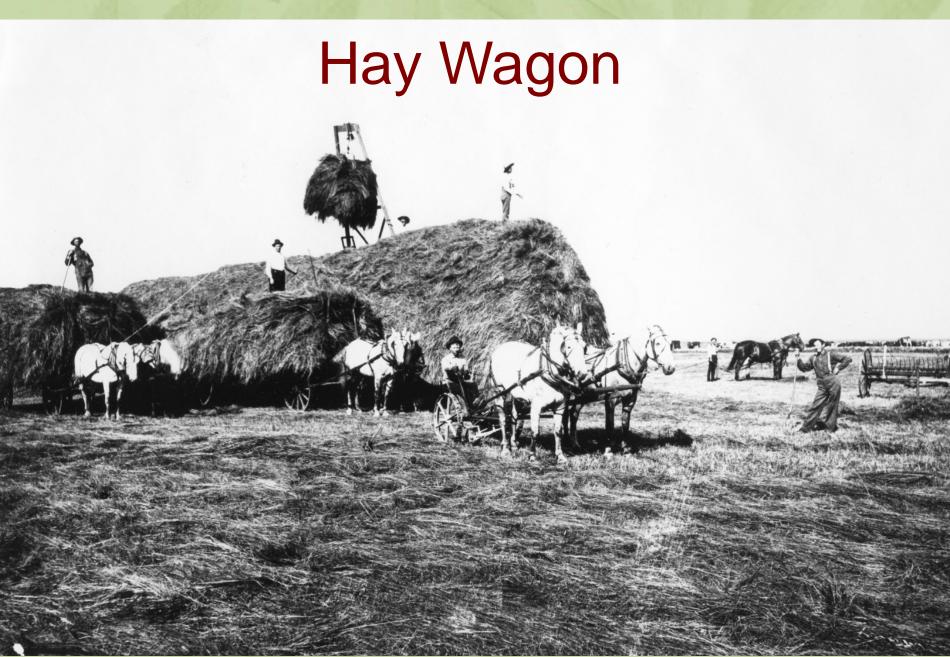
 \bigcirc

Rotary Rake

त्र वृत्रविग राज्य त्रान्त्र के स्वतंत्र स्वतंत्र के स्वतंत्र के स्वतंत्र के स्वतंत्र के स्वतंत्र के स्वतंत्र क

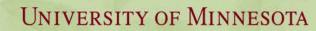
Windrow Inverter

*



Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.** Baling V. Transport **VI. Storage VII.Moisture Content**



Lifting Hay

Bale Types and Weights

Small Squares

Med. Squares Large Squares Med to Lg Round 40 lb to 100 lb 450 lb to 800 lb 800 lb to 1000 lb 550 lb to 2000 lb

Bale Packaging

Older Square Baler

\bigcirc

Large Square Baler

Large Round Baler

Large Round Baler

45

JOHNDEERE

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.** Baling V. Transport **VI. Storage VII.Moisture Content**

Large Round Bale Pickup

Section 1

Large Round Bale Transport

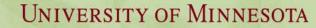
Large Rectangular Bale Pickup

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking IV. Baling V. Transport **VI. Storage VII.Moisture Content**

and the second second and the production of the production of the second s Moldy Bales

Round Bales in Field


a rest

Linken Markel

UNIVERSITY OF MINNESOTA

No.

Outside Storage

Store in Well-Drained Spot

Sync title to second sentence

Storage on Pallets or Gravel

Plastic Covering

UNIVERSITY OF MINNESOTA

Plastic Wrapping

110

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking IV. Baling V. Transport **VI. Storage VII.Moisture Content**

\bigcirc

Improper Moisture

> 20%: risk of mold growth< 15%: excess field loss due to leaf shattering</p>

Moldy alfalfa hay

Why Incorrect Moisture Occurs

Measurement technique
Variation in the field
Fear of rain

Hay Moisture

Determined in the field by farmer

 Subjective: feel, smell
 Electronic
 Drying a subsample

Conclusions

Haymaking challenges:
Minimize field losses
Minimize storage losses
Make hay while the sun shines!

REFERENCES and **RESOURCES**

- Sheaffer, C.C., et al., 2003. Forage Legumes. Minnesota Agriculture Experiment Station Bull. 608-2003. St. Paul MN.
- Sheaffer, C. 2010. Forages in Risk Management Guide for Organic Producers. University of Minnesota. <u>https://organicriskmanagement.umn.edu/sites/orga</u> nicriskmanagement.umn.edu/files/forages.pdf
- Undersander et al., 2011. Alfalfa management guide. ASA-CSSA-SSSA, Madison, WI. <u>https://www.agronomy.org/files/publications/alfalfamanagement-guide.pdf</u>

Harvesting and Storage of Forages

I. What is Hay? II. Cutting and Drying **III.** Raking **IV.Baling** V. Transport **VI.Storage**

This material is based upon work that is © 2017 Regents of the University of supported by the National Institute of Minnesota. All rights reserved Food and Agriculture, U.S. Department The University of Minnesota is an equal of Agriculture, under grant number opportunity educator and employer.

United States Department of Agriculture National Institute of Food and Agriculture