This PDF is a version of an online module that is part of the Principles for Transitioning to Organic Farming project. For all of our educational materials, please visit:

http://organictransition.umn.edu/

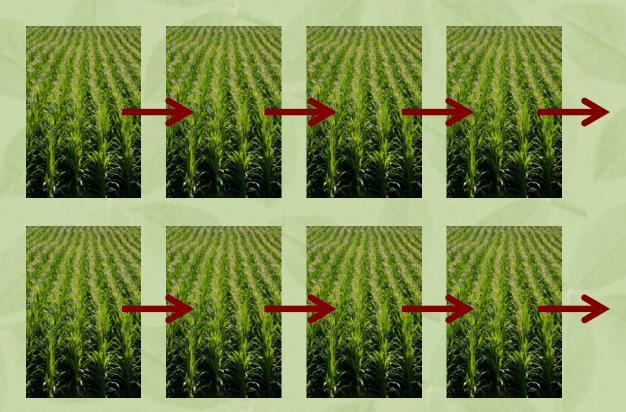
This project is funded by a grant from the <u>Organic Transitions Program</u>, part of the USDA National Institute of Food and Agriculture, under Grant Number <u>2013-51106-21005</u>.

© 2017. Regents of the University of Minnesota. All rights reserved.

Rotations for Organic Grain Cropping Systems

This material is based upon work th <u>Authors</u> to by t Kristine Moncada f Fc Constance Carlson S. Dep Gigi DiGiacomoture, unde Craig Sheaffer 2013-51106-21005.

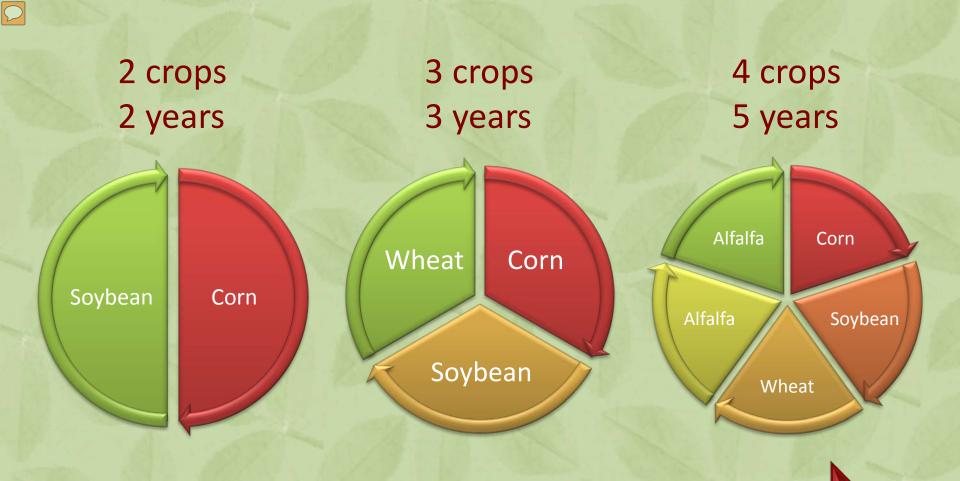
Rotation


I. Definition II. Benefits III. NOP Standards IV.Planning V. Examples Year 4 Year 2 Year 2 Year 2 Year 2 Year 3

Rotation Definition – NOP 205.205

- A rotation is the "alternating of annual crops grown on a specific field in a planned pattern or sequence in successive crop years"
- Thus, "crops of the same species or family are not grown repeatedly without interruption on the same field"

Continuous Cropping


- Example: growing corn in the same field every year
- Growing any annual crop two years in a row on the same field is **not** allowed in organic systems

Rotation Types

Vary in length and diversity
Vary by region based on crop adaptation

ROTATION BENEFITS INCREASE

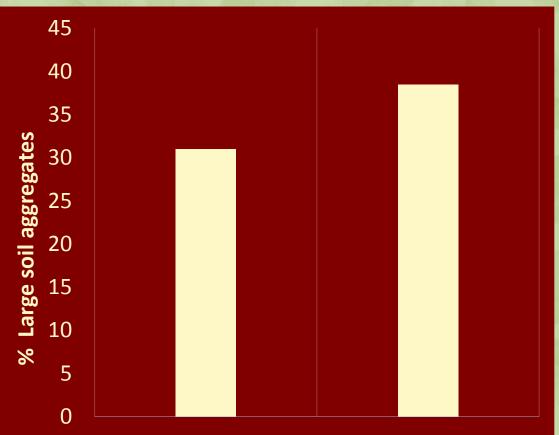
Rotation

I. Definition II. Benefits III. NOP Standards IV. Planning V. Examples Year 4 Year 2 Year 2 Year 2 Year 2 Year 3

Benefits of Diverse Rotations

A. Soil quality and fertility **B.** Weed management C. Disease and insect management **D.** Other benefits

Soil Quality



Winter rye cover crop, spring growth Diverse rotations with perennials can increase soil organic matter

 Perennials and cover crops can overwinter for reduced soil erosion

Organic Rotation Experiment

- 2-year rotation = corn-soybean
- 4-year rotation = corn-soybeanoat-alfalfa
- Greater number of large soil aggregates in 4year rotation

2-YEAR ROTATION 4-YEAR ROTATION

Kuratomi et al., 2004

Increased Soil Fertility

 Legumes (crops, cover crops, and green manures) add N to soils by nitrogen fixation

 Corn after alfalfa will often have all the nitrogen needed for good yields

Plot 1 Grown after alfalfa

Plot 2 Grown after wheat

Rotation Effect

Yields in rotations are greater than those in continuous cropping

Above that associated with increased N from legumes in rotation

Exact reason why is unknown!

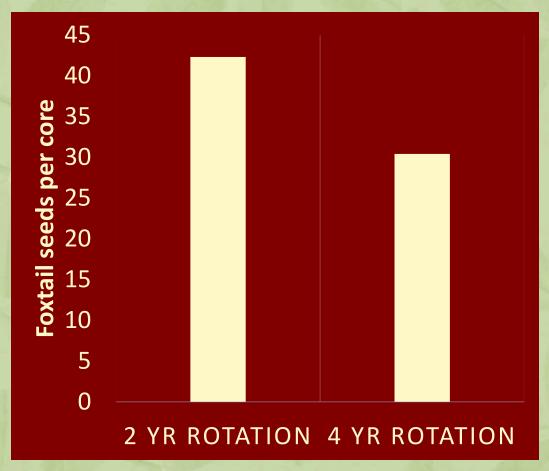
Benefits of Diverse Rotations

A. Soil quality and fertility **B.Weed** management C. Disease and insect management **D.** Other benefits

Rotation Diversity and Weeds

- Repeatedly growing crops with similar production practices will lead to weeds adapted to those practices
- Examples in corn and soybean: pigweeds and foxtails

Small Grains in Rotation


- Cool season crops
- Have different times of planting and harvesting
- May help reduce weeds that thrive in row crop production

Perennial Forages

- Provide continuous soil cover to inhibit weeds from germinating
- Multiple harvest times can set back annual and perennial weeds

Rotation and Weed Seed Study

Foxtail seeds in the soil were lower in a 4-year rotation that included oats and alfalfa

Haar et al., 2008 (unpublished data)

Benefits of Diverse Rotations

A. Soil quality and fertility B. Weed management **C.** Disease and insect management **D.** Other benefits

Disease and Insect Management

European corn borer

Rotation breaks up disease and insect cycles

Soybean Cyst Nematode Research

Rotation	SCN (eggs/100cc of soil)	
Soybean once every 2 years	3657	
Soybean once every 3 years	1306	
Soybean once every 4 years	496	
No soybean in rotation	0	
Threshold for damage > 500 eggs/100cc		
	Chen et al., 2012	
The more soybean is grown in a field,		
the more prevalent SCN becomes		
University of Minnesot		OTA

\bigcirc

Examples

Crop	Pest	Rotation Period
Corn	Corn root worm	1-2 years
Soybean	Soybean cyst nematode	3-5 years
Small grains	Scab	2-3 years

Some Pests Can't Be Managed with Rotation

- Some pests travel Ex. soybean rust
- Some pests are ubiquitous – Ex. lesion nematode
- Some persist for many years – Ex. Sclerotinia
- Some disease survives without hosts – Ex. Pythium

Benefits of Diverse Rotations

A. Soil quality and fertility B. Weed management C. Disease and insect management **D. Other benefits**

Reduced Financial Risk

 Diverse rotations can reduce <u>financial</u> risk from:

 Crop failure
 Price swings

Diversify Field Operations

- Spreads out work over the field season
- Reduces the risk of not having enough time to perform timely operations

Rotation

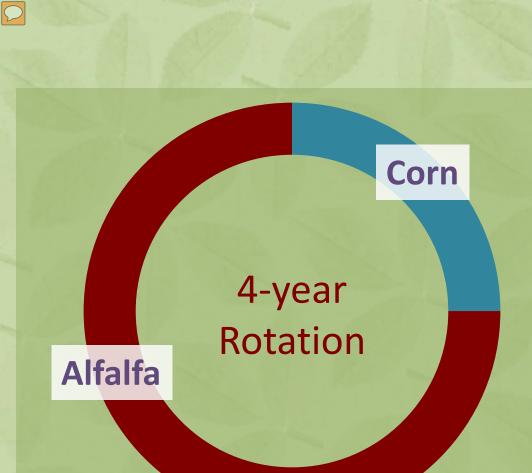
I. Definition Year 1 Year 2 **II.** Benefits **III. NOP Standards IV.Planning** V. Examples Year 4 Year 3 **VI.**Transition

Rotation Goals – NOP

The National Organic Program has a strong emphasis on diverse rotations because rotation is one of the strongest management tools an organic farmer has.

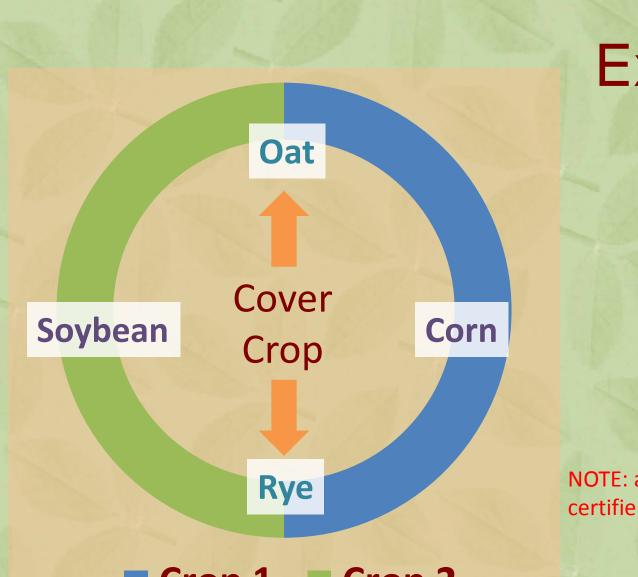
NOP Rotation Standards

- Legumes
- Diversity of species and plant families
- Crops with different rooting systems
- Crops with different pest pressures
- Green manure and cover crops



NOP Rotation Standards

Crop Years Crop Crop 2 3


 Minimum of 3 crops within 5-year period for field crop systems

 Can't follow an annual crop with the same annual crop in the subsequent year

Annual Crop - 1 yearPerennial Crop - 3 years

Exception 1 Two crops if one is a perennial grown for more than 2 years

Exception 2

Two crops, plus a cover crop

NOTE: ask Jim about whether certifiers can deny 2nd option

Crop 1 Crop 2

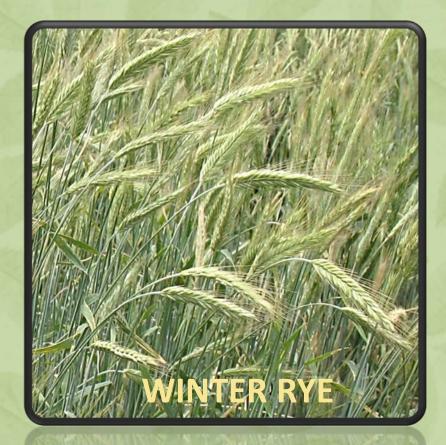
Rotation

I. Definition
II. Benefits
III. NOP Standards
IV.Planning
V. Examples
Year 4
Year 3

Important Considerations

A. Markets B. Your Operation C.Crop Sequence **D.** Flexibility

Planning Your Rotation


Balancing profits with soil health and other rotation benefits is key to finding crop rotations that work best for your operation

Markets

Other Modules to View

Marketing

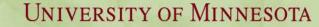
Growing a New Crop

Important Considerations

A. Markets **B. Your** Operation C.Crop Sequence **D.** Flexibility

Your Operation – Crop Adaptation

Consider:


 Disease
 prevalence
 Soil conditions

Wheat infected with fusarium head blight (scab)

Your Operation – Equipment

Do you have equipment or access to custom work?

Your Operation – Manure Availability

Important Considerations

A. Markets **B.** Your Operation C.Crop Sequence **D.** Flexibility

Crop Sequence

Host crops for the same diseases should not be grown after one another

Crop Sequence

Crops that fix nitrogen should be followed by crops with high N needs

Crop Sequence

Less competitive should alternate with competitive crops

Important Considerations

A. Markets **B.** Your Operation C. Crop Sequence **D.** Flexibility

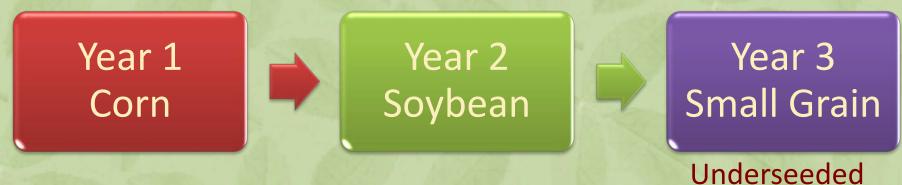
Need for Flexibility

- Weather conditions
- Market changes
- Disease prevalence

If You Need to Make Changes

If You Need to Make Changes

1. All changes follow NOP rules 2. Notify your certifier of changes 3. Track changes in records including your **Organic System** Plan (OSP)

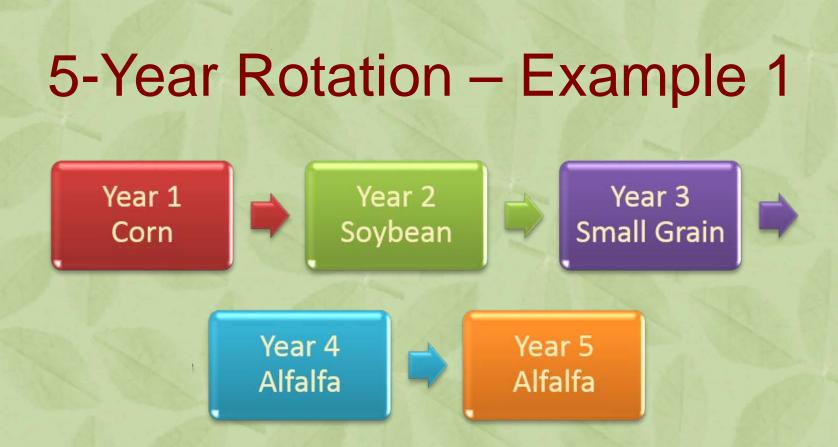


Rotation

I. Definition
II. Benefits
III. NOP Standards
IV.Planning
V. Examples
Year 4
Year 3

Rotation Examples

w/ red clover


- Common rotation in regions without livestock
- Small grain often underseeded with red clover
- Compost or manure will likely be necessary
- Rotation is less diverse

- Similar to previous example
- Field peas are harvested early and allow time for planting a fall cover crop

- Good rotation for producers without manure
- Small grain underseeded with alfalfa
- Alfalfa will provide most of the N for the corn
- Alfalfa provides many benefits

- Similar to previous example
- An additional year of alfalfa
- Should provide all of the N for the corn

- 2 years of high-value corn
- Year 3 corn will require fertilizer
- 3 years of row crops not ideal

Rotation Examples

Farmer Profile – Rotation

 3-year rotation = corn-soybean-small grain underseeded with red clover

 6-year rotation = corn-soybean-small grain-alfalfa-alfalfaalfalfa

Small grain underseeded with legume

Rotations – Farm Scale

183/37 () (S	Year 1		Year 2		Year 3		Year 4		Year 5		
761 74	SP SU	FA WI	SP SU FA	WI	SP SU	FA WI	SP S	U FA	WI	SP SU	FA WI
Field 1: 5-yr rotation	Corn	2	Soybean		Oat		Alfalfa				
ANY THE PART AT ANY											
Field 2: 3-yr rotation	Wheat	Red Clover	Corn		Soybe	an	Oat	-	ed over	Cor	n
	S. M.	S.Z.		C. M	COST IN	1		101		49	
Field 3: 3-yr rotation	Soybea	in 📄	Barley	ed over	Corr	1	Soy	bean		Wheat	Red Clover

- Different rotations for different fields
- Rotations are staggered

Resources

- Pioneering Illinois farmer recounts transition to organic – Rodale
- <u>Tipsheet: Crop Rotation in Organic</u> Farming Systems – ATTRA
- Crop Rotation on Organic Farms SARE
- <u>Risk Management for Organic Producers –</u> <u>Rotation</u>

Rotation

I. Definition
II. Benefits
III. NOP Standards
IV.Planning
V. Examples
Year 4
Year 3

This material is based upon work that is © 2017 Regents of the University of supported by the National Institute of Minnesota. All rights reserved Food and Agriculture, U.S. Department The University of Minnesota is an equal of Agriculture, under grant number opportunity educator and employer.

United States Department of Agriculture National Institute of Food and Agriculture

References

- Chen, S.Y., C.C. Sheaffer, D.L. Wyse, P. Nickel, and H. Kandel. 2012. Plant-parasitic Nematode Communities and Their Associations with Soil Factors in Organically Farmed Fields in Minnesota. J Nematol. 44:361-369.
- Kuratomi, M., D. Allan, and E. Dyck. 2004. Long term effects of crop management: Soil quality. Results from VICMS study at the Southwest Research and Outreach Center in Lamberton, Minnesota. <u>http://greenlandsbluewaters.net/Long_term_soil_quality.pdf</u>
- Larsen, D. 2015. Small grains offer many benefits in crop rotation. Midwest Organic and Sustainable Education Service. <u>https://mosesorganic.org/small-grains/</u>
- Midwest Cover Crops Council. 2016. Integrating Cover Crops in Soybean Rotations Challenges and Recommendations for the North Central Region. <u>http://mccc.msu.edu/wp-content/uploads/2016/10/ALL_2015_Integratingcover-crops-in-soybean-rotations.pdf</u>
- Mohler, C.L. and S.E.Johnson. 2009. Crop Rotation on Organic Farms: A Planning Manual. Published by NRAES. <u>http://www.sare.org/Learning-Center/Books/Crop-Rotation-on-Organic-Farms</u>

References (cont.)

- Moncada, K. and C. Sheaffer. 2010. Rotation. Chapter 2 in Risk Management for Organic Producers. Moncada, K. and C. Sheaffer, editors. University of Minnesota, St. Paul, MN. <u>https://organicriskmanagement.umn.edu/sites/organicriskmanagement.umn.edu/files/rotation.pdf</u>
- Sheaffer, C. and K. Moncada. 2012. Introduction to Agronomy: Food, Crops, and Environment. 2nd edition. Clifton Park, NY: Cengage Learning.
- USDA-NRCS. 2010. Organic Production: Using NRCS Practice Standards to Support Organic Growers. <u>https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb104</u> <u>3183.pdf</u>
- U.S. Government of Publishing Office. 2017. Electronic Code of Federal Regulations. §205.205 Crop rotation practice standard. <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=d85d56330bbb8f4faab941184bb2eccc&mc=true&node=se</u> <u>7.3.205_1205&rgn=div8</u>